
--I=---

THE INTERIYE’T WORM

Password Cracking:
A Game of Wits

The following report has belzn gleaned from 74 Tour of the Worm,”
an in-depth account of the November Internet infection. The author
found the worm.5 crypt algorithm a frustrating, yet engaging, puzzle.

Donn Seeley

A password cracki:rg algorithm seems like a slow and variations. The worm tries a little harder than this: it
bulky item to put in a worm, but the worm makes this checks the null password, the account name, the ac-
work by being pen istent and efficient. The worm is count name concatenated with itself, the first name
aided by some unfortunate statistics about typical pass- (extracted from the user information field, with the first
word choices. letter mapped to lower case), the last name, <and the

For example, if the login name is “abc,” then “abc,”
“cba,” and “abcabc” are excellent candidates for pass-
words.

[F.T. Grammp and R. Morris]

The worm’s password guessing is driven by a 4-state
machine. The first state gathers password data, while
the remaining states represent increasingly less likely
sources of potential passwords. The central cracking
routine is called cracksome(), and it contains a switch
on each of the four states.

The routine that implements the first state we named
crack.-O(). This routine’s job is to collect information
about hosts and accounts. It is only run once; the infor-
mation it gathers persists for the lifetime of the worm.
Its implementation is straightforward: it reads the files
/etc/hosts.equiv and /.rhosts for hosts to attack, then
reads the password file looking for accounts. For each
account, the worm saves the name, the encrypted pass-
word, the home directory and the user information
fields. As a quick preliminary check, it looks for a
.fomard mail forwarding file in each user’s home direc-
tory a.nd saves any host name it finds in that file.

We unimaginatively called the function for the next
state c:rack-l(). .c:*ack-l() looks for trivially broken
passwords. These are passwords which can be guessed
merely on the basir of information already contained in
the password file. Grampp and Morris [Z] report a sur-
vey of over 100 password files that found that between
8 and 30 percent of all passwords could be guessed
using ,just the literal account name and a couple of

0 1989 ACM OOOl-0682/8(/0600-0700 $1.50

account name reversed. It runs through up to 50 ac-
counts per call to cracksome(), saving its place in the
list of accounts and advancing to the next state when it
runs out of accounts to try.

The next state is handled by crack-2(). In this state
the worm compares a list of favorite passwords, one
password per call, with all of the encrypted passwords
in the password file. The list contains 432 words, most
of which are real English words or proper names; it
seems likely that this list was generated by stealing
password files and cracking them at leisure on the
worm author’s home machine. A global variable nextw
is used to count the number of passwords tried, and it
is this count (plus a loss in the population control game)
that controls whether the worm exits at the end of the
main loop-nextw must be greater than 10 before the
worm can exit. Since the worm normally spends
2.5 minutes checking for clients over the course of the
main loop and calls cracksome() twice in that period,
it appears that the worm must make a minimum of
7 passes through the main loop, taking more than
15 minutes.’ It will take at least nine hours for the

’ For those mindful of details: the first call to cracksome() is consumed
reading system files. The worm must spend at least one call to cracksome()
in the second state attacking trivial passwords. This accounts for at least one
pass through the main loop. In the third state. cracksome() tests one pass-
word from its list of favorites on each call; the worm will exit if it lost a roll of
the dice and more than 10 words have been checked. so this accounts for at
least six loops, two words on each loop for five loops to reach :LO words, then
another loop to pass that number. Altogether this amounts to a minimum of 7
loops. If all 7 loops took the maximum amount of time waiting for clients, this
would require a minimum of 17.5 minutes, but the two-minute check can exit
early if a client connects and the server loses the challenge, hence 15.5
minutes of waiting time plus runtime overhead is the minimum lifetime. In
this period, a worm will attack at least 8 hosts through the host infection
routines, and will try about 18 passwords for each account, attacking more
hosts if accounts are cracked.

700 Communications of the ACM June 1989 Volume 32 Number 6

worm to scan its built-in password list and proceed to
the next state.

The last state is handled by crack-8(). It opens the
UNIX” online dictionary /usr/dict/words and goes
through it one word at a time. If a word is capitalized,
the worm tries a lower-case version as well. This
search can essentially go on forever: it would take
something like four weeks for the worm to finish a
typical dictionary like ours.

When the worm selects a potential password, it
passes it to a routine we called try-password(). This
function calls the worm’s special version of the UNIX
password encryption function crypt() and compares
the result with the target account’s actual encrypted
password. If they are equal, or if the password and
guess are the null string (no password), the worm saves
the cleartext password and proceeds to attack the hosts
that are connected to this account. A routine’we called
try-forward-and-rhosts() reads the user’s .forward
and .rhosts files, calling the previously described hul()
function for each remote account it finds.

FASTER PASSWORD ENCRYPTION

The use of encrypted passwords appears reasonably
secure in the absence of serious attention of experts in
the field.

[R. Morris and K. Thompson]

Unfortunately, some experts in the field have been giv-
ing serious attention to fast implementations of the
UNIX password encryption algorithm. UNIX password
authentication works without putting any readable ver-
sion of the password onto the system, and indeed works
without protecting the encrypted password against
reading by users on the system. When a user types a
password in the clear, the system encrypts it using the
standard crypt() library routine, then compares it
against a saved copy of the encrypted password. The
encryption algorithm is meant to be basically impossi-
ble to invert, preventing the retrieval of passwords by
examining only the encrypted text, and it is meant to
be expensive to run, so that testing guesses will take a
long time. The UNIX password encryption algorithm is
based on the Federal Data Encryption Standard (DES).
Currently no one knows how to invert this algorithm in
a reasonable amount of time, and while fast DES encod-
ing chips are available, the UNIX version of the algo-
rithm is slightly perturbed so that it is impossible to use
a standard DES chip to implement it.

Two problems have been mitigating against the UNIX
implementation of DES. Computers are continually in-
creasing in speed-current machines are typically sev-
eral times faster than the machines that were available
when the current password scheme was invented. At
the same time, methods have been discovered to make
software DES run faster. UNIX passwords are now far
more susceptible to persistent guessing, particularly
if the encrypted passwords are already known. The

SPECIAL SECTlON

worm’s version of the UNIX crypt() routine ran more
than nine times faster than the standard version when
we tested it on our VAX 8600. While the standard
crypt() takes 54 seconds to encrypt 271 passwords on
our 8600 (the number of passwords actually contained
in our password file), the worm’s crypt() takes less
than six seconds.

The worm’s crypt() algorithm appears to be a com-
promise between time and space: the time needed to
encrypt one password guess versus the substantial extra
table space needed to squeeze performance out of the
algorithm. Curiously, one performance improvement
actually saves a little space. The traditional UNIX algo-
rithm stores each bit of the password in a byte, while
the worm’s algorithm packs the bits into two 82-bit
words, This permits the worm’s algorithm to use bit-
field and shift operations on the password data, which
are immensely faster. Other speedups include unrolling
loops, combining tables, precomputing shifts and
masks, and eliminating redundant initial and final per-
mutations when performing the 25 applications of mod-
ified DES that the password encryption algorithm uses.
The biggest performance improvement comes as a re-
sult of combining permutations: the worm uses ex-
panded arrays which are indexed by groups of bits
rather than the single bits used by the standard algo-
rithm. Matt Bishop’s fast version of crypt() [l] does all
of these things and also precomputes even more func-
tions, yielding twice the performance of the worm’s
algorithm but requiring nearly 200 KB of initialized
data as opposed to the 6 KB used by the worm and the
less than 2 KB used by the normal crypt().

How can system administrators defend against fast
implementations of crypt()? One suggestion that has
been introduced for foiling the bad guys is the idea of
shadow password files. In this scheme, the encrypted
passwords are hidden rather than public, forcing a
cracker to either break a privileged account or use the
host’s CPU and (slow) encryption algorithm to attack,
with the added danger that password test requests
could be logged and password cracking discovered. The
disadvantage of shadow password files is that if the
bad guys somehow get around the protections for the
file that contains the actual passwords, all of the pass-
words must be considered cracked and will need to be
replaced.

Another suggestion has been to replace the UNIX
DES implementation with the fastest available imple-
mentation, but run it 1000 times or more instead of the
25 times used in the UNIX crypt() code. Unless the
repeat count is somehow pegged to the fastest available
CPU speed, this approach merely postpones the day of
reckoning until the cracker finds a faster machine. It’s
interesting to note that Morris and Thompson measured
the time to compute the old M-209 (non-DES) password
encryption algorithm used in early versions of UNIX on
the PDP-11/70 and found that a good implementation
took only 1.25 milliseconds per encryption, which they

UNIX is a registered trademark of AT&T Bell Laboratories. VAX is a trademark of Digital Equipment Corporation

]une 1989 Volume 32 Number 6 Communications of the ACM 701

SPECIAL SECTION

deemled insufficier t; currently the VAX 8600 using including gateways between important nation-wide re-
Matt Bishop’s DES based algorithm needs 11.5 milli- search networks in an effort to isolate the worm. This
seconds per encryption, and machines 10 times faster action led to delays of up to several days in the ex-
than i.he VAX 8600 at a cheaper price will be available change of electronic mail, causing some projects to miss
soon (if they aren’t already!). deadlines and others to lose valuable research time.

OPINIONS

The act of break@: into a computer system has to have
the same social stQma as breaking info a neighbor‘s
house. It should not matter that the neighbor’s door is
unlocked.

[K. Thompson]

[Creators of viruses are] stealing a car for the purpose of
joyriding. [R. Morris, in 1983 Capitol Hill testimony,
cited in the New York Times, 11/11/88]

I do not propose to offer definitive statements on the
moral.ity of the worm’s author, the ethics of publishing
security information or the security needs of the UNIX
computing community, since people better (and less)
qualified than I arc! still copiously flaming on these top-
ics in the various network newsgroups and mailing
lists. For the sake of the mythical ordinary system ad-
ministrator who might have been confused by all the
information and misinformation, I will try to answer a
few of the most relevant questions in a narrow but
useful way.

Did fhe worm cab se damage? The worm did not de-
stroy files, intercept private mail, reveal passwords, cor-
rupt databases or plant trojan horses. It did compete for
CPU ,with, and eventually overwhelm, ordinary user
processes. It used up Ilimited system resources such as
the open file table and the process text table, causing
user processes to f(lil for lack of same. It caused some
machines to crash by operating them close to the limits
of their capacity, exercising bugs that do not appear
under normal loads. It forced administrators to perform
one or more reboots to clear worms from the system,
terminating user s 3ssions and long-running jobs. It
forced administrators to shut down network gateways,

It made systems staff across the country drop their
ongoing hacks and work %-hour days trying to corner
and kill worms. It caused members of management in
at least one institution to become so frightened that
they scrubbed all the disks at their facility that were
online at the time of the infection, and limited reload-
ing of files to data that was verifiably unmodified by a
foreign agent. It caused bandwidth through gateways
that were still running after the infection started to
become substantially degraded--the gateways were us-
ing much of their capacity just shipping the worm from
one network to another. It penetrated user accounts
and caused it to appear that a given user was disturbing
a system when in fact they were not responsible. It’s
true that the worm could have been far more harmful
than it actually turned out to be: in the last few weeks,
several security bugs have come to light which the
worm could have used to thoroughly destro:y a system.
Perhaps we should be grateful that we escaped incredi-
bly awful consequences, and perhaps we should also be
grateful that we have learned so much about the weak-
nesses in our system’s defenses, but I think ‘we should
share our gratefulness with someone other than the
worm’s author.

Was the worm malicious? Some people have suggested
that the worm was an innocent experiment that got out
of hand, and that it was never intended to spread so
fast or so widely. We can find evidence in the worm to
support and to contradict this hypothesis. T:here are a
number of bugs in the worm that appear to be the
result of hasty or careless programming. For example,
in the worm’s if-init() routine, there is a call to the
block zero function bzero() that incorrectly uses the
block itself rather than the block’s address as an argu-
ment. It’s also possible that a bug was responsible for

DICK TRACY

Reprinted with permission: Tribune Media Services.

702 Communications of th? ACM June 2989 Volume 32 Number 6

the ineffectiveness of the pouulation control measures
used by the worm. This c&id be seen as evidence that
a development version of the worm “got loose” acciden-
tally, and perhaps the author originally intended to test
the final version under controlled conditions, in an
environment from which it would not escape.

On the other hand, there is considerable evidence
that the worm was designed to reproduce quickly and
spread itself over great distances. It can be argued that
the population control hacks in the worm are anemic
by design: they are a compromise between spreading
the worm as quickly as possible and raising the load
enough to be detected and defeated. A worm will exist
for a substantial amount of time and will perform a
substantial amount of work even if it loses the roll of
the (imaginary) dice; moreover, one-in-seven worms be-
come immortal and cannot be killed by dice rolls.

There is ample evidence that the worm was designed
to hamper efforts to stop it even after it was identified
and captured. It certainly succeeded in this, since it
took almost a day before the last mode of infection (the
finger server) was identified, analyzed and reported
widely; the worm was very successful in propagating
itself during this time even on systems which had fixed
the sendmail debug problem and had turned off rexec.
Finally, there is evidence that the worm’s author delib-
erately introduced the worm to a foreign site that was
left open and welcome to casual outside users, rather
ungraciously abusing this hospitality. He apparently
further abused this trust by deleting a log file that
might have revealed information that could link his
home site with the infection. I think the innocence
lies in the research community rather than with the
worm’s author.

Will publication of worm details further harm security?
In a sense, the worm itself has solved that problem: it
has published itself by sending copies to hundreds or
thousands of machines around the world. Of course, a
bad guy who wants to use the worm’s tricks would
have to go through the same effort that we went
through in order to understand the program, but then it
only took us a week to completely decompile the pro-
gram. Therefore, while it takes fortitude to hack the
worm, it clearly is not greatly difficult for a decent
programmer. One of the worm’s most effective tricks
was advertised when it entered-the bulk of the send-
mail hack is visible in the log file, and a few minutes
work with the sources will reveal the rest of the trick.
The worm’s fast password algorithm could be useful to
the bad guys, but at least two other faster implementa-
tions have been available for a year or more, so it is not
very secret, or even very original. Finally, the details of
the worm have been well enough sketched out on var-
ious newsgroups and mailing lists that the principal
hacks are common knowledge. I think it is more impor-
tant that we understand what happened, so that we can
make it less likely to happen again, rather than spend
time in a futile effort to cover up the issue from every-

SPECIAL SECTION

one but the bad guys. Fixes for both source and binary
distributions are widely available, and anyone who
runs a system with these vulnerabilities needs to look
into these fixes immediately, if they have not done so
already.

CONCLUSION

It has raised the public awareness to a considerable
degree.

[R. Morris, New York Times, 11/5/88]

This quote is one of the understatements of the year.
The worm story was on the front page of the New York
Times and other newspapers for days. It was the subject
of television and radio features. Even the Bloom County
comic strip poked fun at it.

Our community has never before been in the lime-
light in this way, and judging by the response, it has
scared us. I will not offer any fancy platitudes about
how the experience is going to change us, but I will say
that I think these issues have been ignored for much
longer than was safe, and I feel that a better under-
standing of the crisis just past will help us cope better
with the next one. Let’s hope we are as lucky the next
time.

REFERENCES
1. Bishop, M. A fast version of the DES and a password encryption

algorithm. Universities Space Research Institute for Advanced Com-
puter Science, NASA Ames Research Center, Moffatt Field, CA.

2. Grampp, F.T., and Morris, R. UNIX operating system security. AT&T
Bell Laboratories Tech. 1. 63. 8. Part 2. (Oct. 19641. 1649.

3. Morris. R.. and Thompson,’ K: Password Sacwit;: A Case History.
dated April 3, 1978, in the UNIX Programmer’s Manual; in the
Supplementary Documents or the System Manager’s Manual.
(depending upon source and date of manuals).

4. Se&y. D. A tour of the worm. Proceedings of the Winter 1989
Usenix Conference. San Diego, CA, p. 2137.

5. Thompson, K. Reflections on trusting trust, 1983 ACM Turing
Award Lecture. Commun. ACM 27,8 (Aug. 1984), 761.

CR Categories and Subject Descriptors: C.2.0 [Computer Communi-
cation Networks]: General-security and profection; D.4.6 [Operating
Systems]: Cryptographic Controls: K.4.2 [Computers and Society]: Social
Issues--abuse and crime involving computers

General Terms: Security
Additional Key Words and Phrases: UNIX, viruses, worms

ABOUT THE AUTHOR:

DONN SEELEY is a member of the systems staff for the De-
partment of Computer Science at the University of Utah in Salt
Lake City. He has contributed to the U.S. Berkeley Software
Distribution of the UNIX operating system, and works on UNIX
compilers. Author’s Present Address: Department of Computer
Science, 3190 Merrill Engineering Building, University of Utah,
Salt Lake City, UT 84112. donn@cs.utah.edu.

Permission to coov without fee all or Dart of this material is wanted
provided that thL>opies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

June 1989 Volume 32 Number 6 Communications of the ACM 703

